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The suppression of initially isotropic turbulence by the sudden application of a 
uniform magnetic field is considered. The problem is characterized by three 
dimensionless numbers, a Reynolds number R, a magnetic Reynolds number R, 
and a magnetic interaction parameter N (for definitions, see equations (1.2) and 
(1.4)). It is supposed that R 9 1, R, < 1 and N B 1. There are two important 
time scales, t ,  a time characteristic of magnetic suppression, and to = Nt,, the 
’turn-over’ time of the turbulent energy-containing eddies. For 0 < t < to the 
response of the energy-containing components of the turbulence to the applied 
field is linear and the time dependence of the kinetic energy density K(t)  and 
magnetic energy density N(t)  are analysed. There are essentially two distinct 
contributions to each from two domains of wave-number space Bl and g2 (defined 
in figure 2 ) .  In  g1 the response is severely anisotropic, while in B2 it  is nearly 
isotropic. The relative importance of the contributions Kl(t)  (from g1) and K,(t) 
(from B2) to K( t )  depends on the value of the Lundquist number S = (NR,)B. If 
S < 1, then Kl(t)  dominates for all t 5 to and K(t) cc t-* for t ,  < t < to. If 
X 9 R G ~ ,  then K,(t) dominates, and K(t )  cc t-t for R,t, < t < to. If 1 < S < R;2, 
then a changeover in the dominant contribution occurs when t = O(S)R,)t,. 
Analogous results are obtained for the magnetic energy density. 

1. Introduction 
It has been pointed out by Lehnert (1955) that a uniform applied magnetic 

field B, has a pronounced effect on the decay of turbulence in a conducting fluid. 
If the kinematic viscosity of the fluid v is small compared with its magnetic 
diffusivity A, and if circumstances are such that non-linear terms in the govern- 
ing equations are negligible, then the effect of the field is to suppress preferentially 
those Fourier components of the velocity field whose wave vector k has a non- 
zero component parallel to B,, i.e. which tend to bend the field lines. Fourier 
components for which k .  B, = 0 are unaffected by the field-an effect which is 
also well known and of profound importance in the related context of stability 
theory. The time characteristic of this ‘preferential damping ’ process is 

t, = A/?&;, (1.1) 

where h, = (pp)-tB,, ,LL is the magnetic permeability and p the density (assumed 
uniform) of the fluid. 
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A second effect of the magnetic field is that a certain range of Fourier compon- 
ents of the velocity field of small wave-number tend to propagate as Alfvkn 
waves. If the dominant contribution to the energy of the turbulence comes from 
such components, then the turbulence will have the character of a random sea of 
interacting Alfvkn waves. In particular, during the last stages of decay of homo- 
geneous turbulence in the presence of a uniform field, when the length scale of the 
energy-containing eddies increases without limit, the turbulence must have this 
character. The final period of decay has been the subject of several papers, 
following Lehnert (1955); the relation of these contributions to the present study 
will be established in the appendix. 

The specific situation studied in this paper is the following. Suppose that for 
t < 0 a conducting fluid is in a state of turbulent motion characterized by a root- 
mean-square velocity u,, and a length scale (of energy-containing eddies) I,, with 

R = - - - < I .  uo lo  
h m -  

The time scale of the energy-containing eddies (the ‘turnover’ time) is 

to = zo/uo. (1.3) 

Suppose that, at  the instant t = 0, a uniform magnetic field B, is ‘switched on’ 
(whether t,his is a physical possibility is a separate matter which will be discussed 

i.e. t, < to. N is usually described as the magnetic interaction parameter and may 
also be interpreted (when R, < 1) as the ratio of the magnitude of the Lorentz 
force I(0 ~ h )  A h,l to the magnitude of the non-linear part of the inertia force 
Ju . ‘17111 in the equation of motion.? The preferential damping of the turbulence 
then proceeds on a time scale short compared with the time to characteristic of 
the ‘energy transfer’ associated with the non-linear forces. For 0 < t < to, the 
turbulence rapidly adjusts to the new externally applied conditions, and during 
this period of adjustment1 the non-linear forces are negIigible (as are viscous 
forces a fortiori), and the linear decay equations studied by Lehnert are applic- 
able. For t = O(t,) and greater, non-linear forces may again become important in 
determining the new spectral distribution of energy. 

It is well known in other contexts (Batchelor 1953, chap. IV) that, if external 
conditions are suddenly changed, then turbulence will respond in a linear manner 

t If N e 1, then the Lorentz force is small compared with the inertia force, and may be 
expected to have negligible effect on the turbulence. In  this case, the turbulence generates 
weak electric currents whose spectrum is related in a simple way to the spectrum of the 
velocity field (see Liepmann 1952; Qolitsyn 1960; or the review article by Moffatt 1962). 

$ This statement requires refinement when the details of the non-linear process are 
analysed. It is possible that non-linear effects become important after a time of order 
t ,  = Nrt,  where 0 < y < 1. The value of y depends on the detailed nature of the non- 
linear process, which has not yet been satisfactorily analysed. In  any case, it is certain that 
t ,  t, if N is sufficiently large and linear theory is valid until t = O(t,). We shall use the 
preliminary crude estimate y = 1 until analysis definitely reveals an inconsistency. 
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during a time small compared with the time to. The damping of turbulence by 
convection through a wire gauze, and the distortion of turbulence by passage 
through a duct of rapidly varying cross-section have been analysed by linear 
techniques. I n  both cases the theory attempts only to relate the statistical pro- 
perties of the turbulence immediately after the change of conditions (i.e. for 
t < to) to its properties immediately before. 

The feasibility of switching on a field B, a t  the instant t = 0 requires some 
comment. If we imagine that the turbulent fluid is contained in a cubical box of 
side Lo 9 I,, and if the source of the field is an electromagnet with coils surround- 
ing the box, then it takes a finite time of order t, = A-'L; from the moment of 
applying power to the electromagnet, for the field to penetrate to the centre of 
the box; t,s may be described as the switch-on time for the field, and, if the process 

FIGURE 1.  The sudden application of a magnetic field; grid turbulence is convected into the 
region of uniform field between magnet poles N, S. 

is to  be regarded as instantaneous, t, must be small compared with t,, and clearly 
this condition can be satisfied only if 

S holo/A = (NR,)* < lo/Lo. (1.5) 

8 is the Lundquist number, and it will play a central role in the analysis of this 
paper. This suggests that, for strictly homogeneous turbulence (L,-+oo), the 
'switch-on' specification of the problem is legitimate only in the limit #- to;  
alternatively, one could say that the switching on of the field will introduce in- 
homogeneities on the scale AS-~Z,; provided X < 1, it is legitimate to assume that 
homogeneity persists, a t  any rate on the scale I,, of the energy-containing eddies. 

If S < 1,  the simplest way to realize the above conditions in the laboratory 
might be simply to sweep grid turbulence into a region of uniform field (figure 1). 
The switch-on time is then t, = d /  U ,  where U is the uniform mean velocity and d 
the fringeing distance of the field, i.e. approximately the gap width of the magnet 
N-S. The conditions t, < t ,  < to are then satisfied provided 

and, since the ratio uo/ U can be made small simply by decreasing the dynamical 
resistance of the grid used, it should be possible to satisfy these conditions. (Of 
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course, the magnetic Reynolds number based on U ,  Ud/h ,  must remain small, 
since, otherwise, the field of the magnet would be significantly distorted.) 

If S 9 1, then strong inhomogeneity must develop if a field is switched on as 
described above. For turbulence in a box, one would expect the eddies near the 
boundaries to be first affected by the inward-diffusing field. The problems raised 
are certainly interesting, but mathematically intractable. An alternative specifi- 
cation of the problem which does not exclude homogeneity is as follows. Suppose 
that, for t < 0, the fluid is at  rest and permeated by a uniform field B,, and suppose 
that, at  the instant t = 0, a homogeneous random velocity field is generated by 
random impulsive forces (Saffman 1967). In  principle, any initial velocity field 
u(x, 0) may be generated by an impulsive force distribution p-lu(x, 0)6( t ) ;  in the 
absence of any ‘impulsive electromotive forces ’, magnetic field perturbations 
h(x, t) take a finite time to develop, so that h(x, 0) = 0. The problem then is to 
investigabe how ~ ( x ,  t )  evolves statistically, particularly during the ‘initial phase ’ 
0 < t < to. It is by no means obvious whether such conditions can be realized, 
even approximately, under laboratory conditions. Nevertheless, the problem is 
of considerable fundamental interest; it is essential to understand fulIy how a 
field of turbulence is initially modified by a uniform magnetic field, before there 
can be any hope of understanding fully non-linear effects. 

When I&, < 1, the induced field h(x, t )  is of order R,h, and satisfies the linear- 
ized induction equation (Lehnert 1955) 

ah/at = ho . VU + hV2 h. (1.6) 

The relevant initial condition for the problem studied here is h(x,O) = 0. The 
velocity field u(x, t )  is determined by the equation of motion, and for 0 < t < to 
as explained above (assuming N 9 1) it takes the linearized inviscid form 

au/at = - p-lVP + ho . Vh, (1.7)  

where P is the sum of the fluid pressure and the magnetic pressure. The initial 
conditions here are that all statistical properties of the field U(X, 0) are supposed 
given. In  order to carry out the limited analysis of this paper, only the spectrum 
tensor of the field u(x, 0) will be required; a discussion of the most appropriate 
initial conditions will be deferred to Q 3. The fields u and h also satisfy the kine- 
matical conditions 

V . U  = V.h = 0. (1.8) 

One of the aims of this paper will be to determine the time dependence of such 
quantities as the kinetic energy density during such time intervals as that defined 
by t ,  < t < to. Although the physical meaning of such an interval may be clear, 
its mathematical definition may require a word of comment. Two limiting pro- 
cesses are considered, tO/td = N + m and t + m. If the two processes are ‘ tied ’, in 
such a way that t = o ( N ) ,  e.g. t = O(N*),  then the two limits 

t/t ,  + 00, t/t, 3 0, 
are compatible. The notation 

w, N )  f(t) ( t a  < t < Nt,) 
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will be used to mean the same as 

t=o(N) 

Similarly, for example, the notation 

will mean 
Zl/(t,N) = O(t--3) (td < t < Ntd)  

lim t3$(t ,N) = const. 
t-w, N-tm 

t=o(N) 

In  order to avoid tedious repetition, we shall often simply write t > t, and omit 
the explicit dependence on N ,  but it must be stressed that the analysis of $ 3  is 
liable to break down when t = O(Nt,). 

Some of the statistical properties of the solutions of Lehnert’s equations have 
been numerically computed by Deissler (1963). Those of his results that are 
relevant to the present study will be discussed in $ 3. 

A preliminary calculation of the initial response of turbulence to the applica- 
tion of a strong magnetic field, by means of a Taylor series in time, has been 
carried out by Nestlerode & Lumley (1963). This provides an indication of the 
response while t < t,, when the suppression effect is still very slight. The present 
paper goes very much further, by clarifying the nature of the suppression process 
when t >> t, and the turbulence has been very considerably modified. 

2. The suppression of a single Fourier component 
Equations (1.6) and (1.7) are well known as the equations that describe decay- 

ing Alfvdn waves. Certain properties of the solutions of the equations that are of 
central importance in later sections are recapitulated here. Let us restrict atten- 
tion to fields which admit a Fourier representation of the form 

u(x,t) = p(k,t)exp(ik.x)dk, s 
I h(x,t) = q(k,t)exp(ik.x)dk, s 

P(x, t) = Il (k, t )  exp (ik . x) dk, s 
where k = (k l ,  k2, k,), dk = dk1dk2dk,, and the k,-axis is chosen parallel to ha. 
Then the Fourier transforms of equations (1.6), (1.7) and (1.8) are 

(3.2) i 
ap/at = -ikIT/p+i(h,.k)q, 

[(a/at)+Ak2]q = i(ha.k)p, 
k . p  = k.q = 0. 

It follows immediately that k211 = 0, and hence that kIT = 0. Equations (2 .2)  
then admit decaying solutions, p, q oc e-lt, where p is a root of the quadratic 
equation -/3(-/3+Ak2)+(ha.k)2 = 0, 

i.e. p = *hk2[1 f (1 -c2)4] = p1,p2, say; (2.3) 
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here 5 is the parameter introduced by Lehnert (1955) 

6 = 2h,. k/k2h = (2k , /k )  cos 8, (2.4) 

k d  = h , / A  (2.5) 

where E d ,  the 'dissipation wave-number', is defined by 

and 8 is the angle between h, and k. 
As observed by Lehnert, the character of the decay depends critically on the 

value of [; if 161 < 1 both roots p1 and p2 are real and positive, and p and 9 decay 
exponentially without oscillation, while, if 151 > 1, the roots are complex con- 
jugates and damped oscillating solutions occur. It will be expedient to consider 

FIGURE 2. The domains gl, 
is indicated. The complete 
plane 6' = $n. The locus 6 
k = 0. 

L@, and ga of wave-number space. Only the half-space cos 0 >, 0 
picture is symmetrical about the axis 6' = 0 and about the 
= 6 is the sphere of radius 26k, touching the k,k,-plane at 

separately the behaviour of the solutions in the following three domains (figure 2) 
of wave-number space 

gl: 161 < s; g2: 161 > 8-1; g3: 8 < 161 < 8-1, (2.6) 

where S is any fixed number, 0 < 6 < 1; to be specific, and for numerical con- 
venience, let & = ?*. At a later stage (see (3.41) below), we shall let &+ 1, so that 
B3 will disappear. 

(i) The  decay of Fourier components in 9l 

Here define a new variable 6 by 

(2.7) 

(2.8) 
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and it is readily verified that the solution of (2.2) subject to the initial conditions 

Pfk, 0)  = Po(k), q(k,  0)  = 0, (2.9) 

(2.10) 

pl AP,  p2 h7c:cos2e, (2.11) 

and p M poe-lZt, (2.12) 

1 is p = 4 tan 5( e-fl2tcot ic  - e-llftan $5) po ,  
q = --z $ * tan c ( e - f i 2 t  - e-Plt) po.  

For 161 < 1 , t  M 5 and these results take the simpler approximate form 

q M &i6(e+zt-e-P1')p0 N &cpoe-Pzf ( t  9 (hk2)-l) .  (2.13) 

The magnetic energy in such a Fourier component is a factor ac2 smaller than the 
kinetic energy. 

(ii) The decay of Fourier components in g2 

Here the substitution 6 = cosh 5 is appropriate, and the solution: of equation (2.2) 
subject to the initial conditions (2.9) is 

(2.14) 
q = ip, coth c sin ot e--fhkZt, I 

where w = iAk2sinhc. When combined with the factor eik-=, this represents a 
damped 'standing' Alfv6n wave of well-known type. When (6) 9 1, lcoth [I M 1, 
and the energy of the Fourier component (2.14) is equally divided between the 
velocity and the magnetic fields. 

(iii) The decay of Fourier components in g3 
Although the solution (2.10) will be used only in gl, it is clearly valid in the wider 
domain 161 < 1. Likewise the solution (2.14) is valid in 161 > 1. Both solutions 
behave in a singular manner as I < I  + 1; hence the need to consider separately 
the domain g3. 

For 161 = 1, PI = P2 = +ilk2, and the solution of (2.2) subject to (2.9) is 

(2.15) 
p = (1 + +hi%) p o e - W 2 f ,  
q = +ihk2tpo e-Mz1. 

We shall require an upper bound on the solution in 5B3, related to (2.15). For 
2-4 < 161 < 1, the solution (2.10) is valid; hence, since 

it follows that 

1 
e-Wi-ldf = e-(Ak2cosOt >/ 1 - (hk2cos5) t ,  

IpI < ~tan~e-fizt[cot+t;-tan~&(1-hk2tcos~)]Ipol 

where a = sinzin. For 1 < Iy] < 24, the solution (2.14) is valid; hence, since 
lcosotl Q 1, (sinwtl 6 loti, 

[ I+  hk2t1 I Pol , Q e-ahk2t 

(2.16) 

(2.17) 

Fluid Mech. 28 
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3. Suppression of homogeneous turbulence 

For homogeneous turbulence, the Fourier-Stieltjes representation 

(a )  Initiut conditions 

u = eik.%P(k,t), h(x, t )  = eikeXdQ(k, t ) ,  s s 
is appropriate (Batchelor 1953, 52.5).  The analysis of 52 still applies, with the 
replacements 

~ ( k ,  t) -tdP(k, t ) ,  q(k, t )  -+dQ(k, t).  ( 3 4  

The spectrum tensor of the velocity field is defined by 

QD,(k, t) = ( 2 ~ ) - ~  uz(x, t)ui(x+ r,t)eqkerdr, (3.3) s 
and it is related to dP(k, t )  (Batchelor 1953) by 

dP:(k, t)dq(k, t) 
dk, dk, dk, ' QSj(k,t) = lim 

CZk-0 
(3.4) 

where the bar denotes an ensemble average (in view of the spatial homogeneity, 
the bar in (3.3) may equally be regarded as a space average). The inverse of (3.4) is 

J 
so that in particular 

Let Yii(k, t )  be the magnetic spectrum tensor defined analogously in terms of h 

An 'interaction tensor' (see Lehnert 1955) may also be defined, but its properties 
will not be investigated here. 

With h(x, 0) = 0, and so dQ(k, 0) = 0, it is clear that the results of $2 and the 
relations (3.4) and (3.7) permit us immediately to write down expressions for 
@,(k, t) and YiS(k, t )  in terms of cD,(k, 0). We shall be particularly interested in 
evaluating integral expressions of the type (3.6), and, to this end, the form of 
Qij(k,O) must be specified. Let us suppose that at  t = 0 the turbulence is iso- 
tropic, so that (Batchelor 1953, $3.4) 

where Eo(k) is the initial spectrum function satisfying 

J O  
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We shall suppose that E,(k) is characterized by a single wave-number k,, so that, 
on dimensional grounds, 

where l O m f ( K ) d K  = 1. (3.11) 

Two specific choices of the function f ( K )  will be considered 

EO(4 = 4%k,lf ( W O ) ,  ( 3 W t  

CK4 . 
1 + & ’  

Prototype A: f ( ~ )  = - (3.12) 

Prototype B: f ( ~ )  = C K ~ ~ - ~ ;  (3.13) 

where, in both cases, Cis a constant of order unity determined by (3.11). In  both 

Eo(k) - +Cuikg6k4 as k+O, (3.14) cases 

a behaviour that is known to be dynamically self-preserving in the absence of 
magnetic effects (i.e. for t < 0 here) (Batchelor & Proudman 1956).$ In  case A, 

E,(k) N $&h:k$k-! (k ko), (3.15) 

the behaviour predicted by the Kolmogorov theory for turbulence which has had 
time (prior to the instant t = 0) to attain a state of ‘small-scale statistical equi- 
librium’. The type B spectrum is probably a better representation of turbulence 
that is created explosively at time t = 0 and that does not have time to develop 
IL ‘Kolmogorov tail’ before the influence of the magnetic field is experienced. 
Both prototype spectra have maxima at  a wave-number of order ka. The length 
scale of the energy-containing eddies I , ,  used in 9 1, may now be identified with 
the scale k,l. 

There are now two distinct times which characterize the suppression problem, 
viz. t,  and 

The ratio of these is 
t, = (A@)-l. (3.16) 

(3.17) 

where S is the Lundquist number, already introduced in § 1. 

(figure 3a), indeed in that part of g1 where the approximation 
More precisely, 

If S < 1, then k, < E,, and the bulk of the initial energy is contained in g1 
< 1 was made. 

(3.18) @ii(k, O)dk M K(O), 

@,(k,O)dk = O(X5)K(0), (3.19) 

using (3.14), valid in g2 in this case. 

t The Reynolds number may occur implicitly in (3.10); however, as explained in § 1 an 
inviscid analysis is appropriate, so that we lose nothing by considering only forms of 
E,(k) appropriate to the limit R -+ 00. 

$ It has recently been shown (Saffman 1967) that the behaviour E,(k) = O(ke)  as 
k --f 0 is also a dynamically self-preserving possibility. The analysis that follows can easily 
be adapted to  an initial spectrum which behaves in this way. 

37-2 
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part of g2 for which 161 9 1 (figure 3 b). More precisely 
If S I, then k ,  9 k,, and the bulk of the initial energy is contained in that 

(3.20) 

(3.21) 

FIGURE 3. The initial energy distribution relative to the domains gl and g2 (the domain 
93 is not shown). The distribution is spherically symmetric, and only its variation with 
wave-number magnitude is indicated. Case (a) : S @ 1 ; case ( b )  : S $ 1, type A spectrum; 
case (c) : S $ 1, type B spectrum. In  cases ( b )  and (c) the dominant contribution to the 
initial energy density comes from the shaded regions. 

Here a distinction has to be made between the type A and the type B initial 
spectra. For a type A spectrum, the second term of (3.21) is dominant and gives 

(3.22) 

For a type B spectrum, the first term of (3.21) is dominant and gives 

K,(O) = O(S-l)K(O). (3.23) 

In this case we shall seek to describe the decay of energy in the time ranges 
t ,  < t < t ,  and t ,  < t < to. Note that tJt0 = R, < 1, by supposition. 

( b )  Kinetic energy decay in 9, 
From the solution (2.10) valid in 9,, the replacement (3.2) and the relation (3.4), 
we have immediately the contribution to K(t )  from g1 

n 

K,(t) = J t tan2 t(e-@zt cot - e-811 tan &$)2 @&, 0) dk. (3.24) 
9 1  
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Since ]cot +El > [tan 851 and p, < PI throughout 9,, the dominant contribution 
to K,(t) is given by? 

(3.25) 

Let (k, 19, x) be spherical polar co-ordinates in wave-number space, and let 
p = cos 8. Then dk = k2dkdpdX. The X-integration in (3.25) is trivial and gives a 
factor 2n. We then change variables from ( k , p )  to (k, c) ,  and, noting that 

and that 
(3.25) becomes 

(3.26) 

(3.27) 

For t B t,, the dominant contribution to the &integral comes from the neighbour- 
hood of 6 = 0,  so that 

where 

(3.28) 

Now Eo(k) has a maximum at k = O(ko) ,  so that, provided 

t B ( A k y  = t,, 

the error function in (3.28) is unity over the range of k which contributes signi- 
ficantly to the integral. Hence for t 9 max (t,, tA) ,  

K,(t) ( + i . ) W O )  ( td / t ) * .  (3.29) 

Thus, when S < 1, this result is valid when t B t,, and, when S > 1, it is valid when 
t B t,. 

If S B 1, and t ,  < t < t,, then 

(3.30) 

The contribution to the integral (3.28) from the range [(At)-*, co] is negligible 
(since (At)-& 9 k,), and (3.28) takes the form 

(3.31) 

t It will appear (see (3.29) below) that the retained term here is proportional to ( td / t )$  
whereas examination of the rejected part of (3.24) shows that it is O(t,/t)%, and is always 
negligible for t 9 td.  
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'd t A  f0 

FIGURE 4. The decay of K,(t), K&), M,(t), M,(t), (a) when S -=g 1, and ( 6 )  when S 9 1. 
The scale is logarithmic. 

where Ic, = O(ht)*. For a type A spectrum this gives 

Kl(t)/Kl(O) = O(t,/tP (td < t < tn) ,  (3.32) 

and for a type B spectrum 

K,(t)/K,(O) = O(1) (td < t < t,J. 
These results are summarized in figure 4. 

(c)  Kinetic energy decay in g2 and g3 
The contribution to K(t)  from gz is 

(3.33) 

(3.34) 
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in the notation of $ 2  (ii). In  Bz, [sinhgl > 1; hence K,(t) is of order 

(3.35) 

If S < 1, (k, < kQ), then we may use the asymptotic form (3.14) in this integral. 
Hence 

(3.36) 

For hkit < 1, i.e. t 4 t,, K,(t)/K,(O) = O( 1). For t 9 t,, 

K2(t) &c~;k,-5(ht)-Q = # ~ ~ ( 0 ) 8 5 ( t , / t ) Q .  (3.37) 

If S 9 1, (kd B ko), then similarly 

- #C(t,/t)Q ( t  9 t*). 
~ z ( ~ ) I K z ( O )  = O(l)  

The behaviour of K2(t)  is also indicated in figure 4. 

(3.38) 

t 

I 
KZ 1 S+RR,-2 

I I 
I I 

I I 
I I M2 

'd t A  ' 0  

FIGURE 5. An indication of the dominant contributions to kinetic and magnetic energy 
densities at different stages of the suppression process. 

The contribution to K(t)  from B3 satisfies 

using the inequality (2.17). Using the variables (6 k) this becomes 
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Hence a repetition of the analysis used above for K,(t) shows that 

IKdt)I oC~S'~(ta/t)~IK(o), (3.40) 

for t 9 t, if S < 1, and for t 9 t, if S 9 1. Hence K3(t) is negligible a t  all times. The 
situation X = O( 1) would pose special difficulties and is not considered here. Since 
the contribution to the energy from B3 is negligible (and the same applies to the 
magnetic energy) it is legitimate to absorb it in 9, and g2, which are accordingly 

gl: 151 < 1; 9,: > 1. (3.41) henceforth defined by 

( d )  Summary: the decay of K(t)  
There are three possibilities that must be distinguished when the contributions 
K,(t) and K2(t) are superposed. 

(i) If S < 1, then K2(t)  is negligible for all t, and the asymptotic behaviour is 
given by equation (3.29). The only significant contribution to the energy comes 
from the neighbourhood of 6 = 0, i.e. 0 = &r; i.e. the turbulence tends to become 
independent of the co-ordinate z parallel to h,. 

(ii) If I. < S 4 X i 2 ,  then K2(0) 9 K,(O), but K2(t) decreases more rapidly than 
K,(t) for t 9 t,, and the two contributions become of the same order of magnitude 
after a time of order t, where (by comparing (3.29) and (3.38)) 

t, = Sat, = Si t ,  = XJR,t,. (3.42) 

For t, << t < t,, K ( t )  M K2(t)  and is given by (3.38), while, for t, < t < to, 
K(t)  M K,(t) and is given by (3.29). Again for t B t,, the turbulence is nearly 
x-independent . f- 

(iii) If S 9 R G ~ ,  then K2(t) 9 K,(t) throughout the suppression process. When 
t = O(t,), the turbulence is still nearly isotropic (since in g2 there is no strong 
tendency to anisotropy-see $4 below) and has the character of a random 
superposition of slowly decaying Alfvbn waves. 

( e )  The ultimate partition of kinetic energy parallel and perpendicular 
to the applied Jield 

The initial isotropy implies that at t = 0, 
- - -  _ -  
u2 = v2 = w2 = &"fZ), (3.43) 

where u = (u, v, w). I f  S 9 Ri2, then this isotropy persists throughout the sup- 
pression process. If S < R i 2 ,  then ultimately the turbulence may be described as 
'nearly two-dimensional', in the sense that all correlations vary slowly in the 
x-direction parallel to h, compared with their variation perpendicular to h,. This 
does not imply, however, that G-+ 0; indeed, for t B max (td,  t,), 

I 1 (3.44) 

7 If non-linear effects become important at the earlier time t,, = N r  to then the change- 
over will occur only if t ,  < t,, i.e. if S < R;2Y1(5-4Y) (see footnote on p. 572). 
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Now from (3.8), 

Qll(k, 0) + Q22(k, 0) = $) (1 + cos28).\ 

(3.45) 

Since the dominant contribution to the integrals (3.44) comes from the neigh- 
bourhood of B = &, the contribution from the cos28 terms is negligible, and so 

(3.46) 
ultimately - _ _  

w2 M u2+v2, 

in contrast to (3.43). The energy is therefore, to some extent, channelled during 
suppression into the component parallel to the field. 

(f) Magnetic energy development and decay 

The magnetic energy may be treated in the same way as the kinetic energy. It 
will be enough to indicate here the essential differences and conclusions. The 
magnetic energy rises from zero (by virtue of the special assumption h(x, 0) = 0) 
to its maximum value in a time of order t,. For t 9 t, 

M2(t) M K2(t) = O[K,(O) (thltF1; (3.47) 

i.e. in g2 there is approximate equipartition of energy; this follows essentially 
from the behaviour of the Fourier components (2.15) for “1 9 1. In  g1 the main 
contribution to Ml(t) again comes from the neighbourhood of 8 = Qn, where, as 
observed after equation (2.13), the magnetic energy in each Fourier component 
is a factor (kd/k0)2  cos2 8 smaller than the kinetic energy. The integral over B1 of 
Yii(k7 t )  for t 9 t, is of order 

(3.48) 

and for t $ max ( t d ,  t,) this gives 

Ml(t) = O [ S 2 ~ ( O ) ( t d / t ) ~ 1 ,  (3.49) 

which may be compared with (3.29). Note that 

Ml(t)/Kl(t)  = O[S2(td/t)l = O(t,/t). (3.50) 

If  S < 1, then M(t )  M Ml(t) at all times. If S $ 1, then, as for the kinetic energy, 
M2(t) B Ml(t) up to a time of order t,, where, by comparing (3.47) and (3.49), 

tm = S3td. 

If tm < to, i.e. if 1 < S < Rzl, then 
(3.51) 

(3.52) 

If S 9 R;l, however, then tm 9 to, so that M ( t )  M M2(t) throughout the sup- 
pression process.? The various possibilities are summarized in figure 5. Note that 

t In  this case t ,  < t, 9 S < R i Y / ( 3 - z Y ) ;  cf. footnote on p. 584. 
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if R;1 < S < R G ~ ,  then, when t = O(t,), the dominant contribution to K( t )  is 
Kl(t) while the dominant contribution to M ( t )  is still 1M2(t); in this case the 
ultimate velocity field is nearly z-independent, while the ultimate magnetic field 
is still nearly isotropic (see equation (4.2) et seq.) 

4. Discussion 
Let us now summarize and elucidate the principal results of the preceding 

section. For 0 < t / t ,  < N the response of the turbulence to  the applied field is 
linear. The nature of the response is largely determined by the initial spectral 
distribution of kinetic energy relative to the domains .Bl and B2 of k-space. 
If S < 1, the bulk of the initial energy is in g1, and it decays for t B t ,  as (t,/t)*. 
The dominant contribution to the energy for t 9 t ,  comes from the region 
lcos 81 = lpl 4 1 of low ohmic dissipation, where the equation for the spectrum 
tensor takes the approximate form 

a 2 
- @,j(k,t) = - -p2@>i j (k , t ) .  
at t , 

The motion tends to become independent of the co-ordinate in the direction of 
h,. The magnetic energy in gl is small compared with the kinetic energy and 
decays as (t,/t)#. 

If S 9 1, the bulk of the initial energy is in g2, the domain of slowly decaying 
Alfvhn waves. Both kinetic and magnetic energy decay as (tA/t)' for t B t,. The 
dominant contribution to this energy ultimately comes from the neighbourhood 
of k = 0 in k-space, actually from Alfv6n waves whose wavelength is of order 
(At )* .  (If the turbulence is not exactly homogeneous, but is confined to a region 
of finite span Lo, the description breaks down after a time of order A-l L% and for 
t % A-1Lg the g2 energy contributions decay exponentially.) If sufficient time is 
available before non-linear effects became significant, the Bl component, no 
matter how small;:initially, will ultimately dominate (K,  dominating K ,  some- 
what earlier than Ml dominates Nz). The spectrum tensor in the region 151 B 1 
where the .B2 energy is concentrated is, from the solution (2.14), 

(4.3) aij(k, t )  = @'as(k, 0 )  e-hk'l cos2 (h,. k) t .  

The rapid variation with 8 is physically unimportant and, for t B (h,k)-l, the 
'smoothed ' isotropic decay, 

cDij(k, t )  w +Ois(k, 0 )  e-Ak t ,  (4.3) 

is a reasonable simplification of (4.3). Similarly, the magnetic energy tensor takes 
the same approximate form. 

The physical reason for the decay being isotropic in this case is broadly that the 
decay factor for each Fourier component is e-,kat, independent of 19; the waves 
travel with a wave velocity h,k cos 8, and this leads to the factor cos2 (h,. k) t in 
(4.2); the magnetic spectrum tensor involves the factor sin2 (h, . k) t ,  the magnetic 
perturbation being exactly out of phase with the velocity in each Fourier com- 
ponent (for small enough k). 
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Some numerical computations that are relevant to the present study have been 
made by Deissler (1963). The computations were made for several values of the 
ratio v/h,  and only the results for v /h  < 1 need be considered here. The main con- 
clusions for this case were (i) that the magnetic energy was negligibly small com- 
pared with the kinetic energy for as long as the computations were continued; 
(ii) that 3w2/u2 increases from 1 to $ during the process of suppression. Both con- 
clusions are borne out by the analysis of this paper in the case S < 1 (see $ 3  ( e )  
and (f)). Perusal of Deissler’s paper shows that his computations are in fact 
relevant only to this case; the asymptotic form (3.14) is adopted as an initial 
condition for all k: and this is legitimate only if the bulk of the initial energy 
is in g,, i.e. only if X g 1. 

When t = O(t,) and later, non-linear terms in the equation of motion will tend 
to redistribute energy in wave-number space, and thus lead indirectly to a change 
in the laws of energy decay. The prevailing tendency in ordinary turbulence is 
for non-linear terms to transfer energy towards the viscous sink a t  high wave- 
numbers. In  the problem under consideration, in addition to this effect, we should 
expect a transfer of energy from the neighbourhood of p = 0 (where there is no 
ohmic:dissipation) towards the region ,LL = O( l), where ohmic dissipation is strong. 
If S is small this will undoubtedly accelerate the decay of energy in B1; i.e. K(t )  
will decrease more rapidly than (td/t)4. It is clear from a consideration of (4.1) 
that the non-linear term will first become significant in the important neighbour- 
hood of p = 0, where the only other term contributing to spectral change is small. 
Relative to the magnetic force, the inertia force is most important in this region, 
and its influence is therefore likely to be felt at  an earlier stage than the original 
crude estimate would suggest (see footnote on p. 2). 

If X is sufficiently large, non-linear effects may be less important. The Alfvkn 
waves in g2 are of small amplitude in the sense ($)*, (@)* < h, provided S 9 R 
(from a consideration of the definition of these two numbers), and interaction of 
decaying Alfvdn waves may do no more than slowly alter the spectral shape as 
described by the linear theory (equation (4.3)). However, there may be a signi- 
ficant transfer of energy from g2 to $3,. In  the absence of a detailed model for the 
process of non-linear transfer, it is impossible to say in which domain of k-space 
the dominant contribution to the energy ultimately resides. 

-- 

Appendix. Relation with previous work on the final period of decay 
As mentioned in the introduction, the linearized MHD equations were studied 

by Lehnert (1955) in the context of the final period of decay, that is, under cir- 
cumstances wherein the velocity and magnetic fluctuations are sufficiently weak 
for non-linear effects to be permanently negligible; sufficient conditions for this 
to be the case are 

R and Rm being based on the r.m.s. velocity and on I ,  = k ~ l ,  the length scale of 
the energy-containing eddies at  some initial instant marking the ‘beginning of 
the final period’. The viscous term vV2u must then be included in the equation of 
motion (1.7); otherwise the equations studied in this paper are unaltered. 

B < 1 ,  R m < 1 ,  (A 1) 
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Several authors have continued the study of Lehnert's equations and it may 
be as well to review briefly their conclusions, and to set them in perspective with 
the present paper. The question of the asymptotic law of decay appears to  have 
been first examined by Alexandrou (1963), who demonstrated that, when A = v, 
the kinetic and magnetic energy densities were asymptotically (i.e. for t -+ a) 
equal, and proportional to t-3 as for non-magnetic turbulence (Batchelor 1953, 
$5.4). The result depends critically on the behaviour of the spectrum tensors 
aij(k,  0) and Y i j ( k ,  0) near k = 0, since essentially it is the Fourier components 
of largest scale which survive longest. The nature of the spectral tensors in this 
neighbourhood is determined by non-linear interactions during the complete 
history of the turbulence prior to the final period of decay. This aspect of the 
problem was examined thoroughly by Alexandrou following the assumption and 
method of Batchelor & Proudman (1956). The essential property of the spectral 
tensors that he obtained for axisymmetric turbulence was 

wheref, and go are functions which depend on the previous (i.e. t < 0) non-linear 
history of the turbulence.? It is then integrals of the form 

ai{(k, 0) cos2 (hokpt) e-hkztdk, 

which asymptotically give contributions proportional to t-g. Alexandrou argued 
further that the t-% law was likely to be asymptotically valid if A + v provided 

The decay of turbulence during the final period in the weakly conducting case 
has been further considered by Lecocq (1962), Eliseev (1965a, b )  and Nihoul 
(1965, 1966). Lecocq obtained the particular form of Lehnert's spectral decay 
results appropriate to the situation v < A. Eliseev, and Nihoul(1965), examined 
the decay of kinetic energy density during the final period, and independently 
obtained the result 

A/v  = O(1). 

K( t )  N t-3 (t/td+m). (A 3) 

In  essence, in these treatments, only the contribution to K( t )  from the domain 
9l of k-space was considered. However, the contribution from 9' in fact falls 
off more slowly than that from 9,, and Nihoul(l966) has now given the modified 
result 

It has not previously been recognized that the decay of K( t )  in the final period 
must depend significantly on the value of the initial Lundquist number 8 as well 
as on the ratio A/v. It will now be shown that Nihoul's result (A 4) is essentially 
correct if S (v/A)4 < 1 (see (A 13) below), but that it requires further modifica- 
tion if S B (v/A).t. 

7 In view of Saffman's (1967) work, it is now evident that this is perhaps not the most 
general possibility. 
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In  order to describe the final period of decay, the analysis of $$2-3 requires 
modification only through the inclusion of the viscous term vV2u in the equation 
of motion (1.7). The modification in the analysis of $ 2  is trivial. The definition 
(2.5) must be replaced by 

and (2.3) becomes 
k, = ho/Ih-VI, (A 5) 

(A 6) /3,, 2 = +( h + v) k2 f $( h - v) k2( 1 - g y .  
If h = v, then k, = co, so that the whole k-space (except the singular plane 
6' = $T) lies in g2. In  this case the analysis of § 3 (c) again gives 

consistent with Alexandrou (1963). This result is insensitive to the choice of the 
functionsf, and go appearing in the initial conditions (A 2) apart from a, constant 
of proportionality of order unity; all that is required is the factor k2 in these 
conditions. 

Suppose now that h B v (results for the case h < v may be inferred by virtue 
of the symmetry of the governing equations). Then k, M ho/h as in $2, and the 
domains 9, and g2 are as before. There are now three time scales that must be 
considered: 

t ,  = h/h& th = (A@-,, t, = ( ~ k ; ) - l ,  (A 8) 

and, by assumption, t, B th. 
It is not difficult to see that the decay in g2 is not materially changed when v 

is non-zero; the amplitude of each Fourier component decays approximately as 
e-@k2t, and the decay of &(t) is still given by (A 7). However viscous effects do 
ultimately become important in 9,; in the region 161 Q 1, the roots (A 6)  become 

/3, M hk2, p2 M hki cos2 8 + vk2. 
This leads to 

Clearly for t < t, the viscous factor is unimportant. The factor exp( - 2tp2/td) 
contributes a factor (td/t)* to K,(t) for t B max (t,, tA) (just as in $ 3  (c)) and the 
factor e-2pk21 contributes a factor (t,/t)% to K,(t) for t $ t,. (Here we consider only 
a type B initial spectrum, this being the more appropriate for a final period of 
decay calculation.) Hence if t ,  < t,, then 

K,(t) M K,(~)(t , / t) t  for max (t,, tA) Q t Q t,, 
(A 10) 1 w K,(o)(t,/t)+(t,/t)i for t 9 t,, 

and, if t ,  + t,, 
(A 11) } 

K,(t) w K,(o)(t,/t)Q for t, < t < t,, 
w K,(O)(t,/t)t(t,,/t)t for t > t,. 

In these results, and in those that follow, constants of order unity are omitted. 

four distinct possibilities summarized in figure 6. 
When the contributions from 9, and g2 are superposed, there are essentially 
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(i) S (v/h)8 < 1, i.e. t, 4 t,, 4 t,. In  this case, K,(t) dominates until a time 

t, = (h/y)5t,,  (A 12) 

(A 13) 
(t” < t 4 t,), 
( t ,  4 t 4 t,), and 

consistent with Nihoul’s (1967) result (A 3). 

time tq; however, (A 13) clearly requires modification 
(ii) (v /h) t  < S < 1, i.e. t, < t ,  4 t,. In  this case K,(t) again dominates until the 

(A 14) 

‘4 t 

I 
O(l) (iv) s 3 ( A / u > ~  ’ K ? ( t ) / w 9  

O(S--’) 
I 

ta ‘A t” 2 

FIUURN 6. Decay of K,(t) and K,(t) in the h a 1  period for different orders of magnitude of 
the parmeter S. The scale is logarithmic. 
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(iii) 1 < S < (h/v)2. In  this case K2(t) dominates for t < t, and for t 9 tf, where 

tc = Sit,, tf = S-2(A/v)4tu, (A 15) 

( t n  < t < t c ) ,  
K(t)  S-l(t,/t)& (t, < t < 41, 

(t, < t < tf), 

but K,(t)  dominateslfor t, Q t < tf. Hence 

(A 16) 1 ( th / t )P  

K(o) = s-l(tA/t)*(tu/t)j 
( t A / t ) +  (t 9 tf). 

(A 17) 

r 
(iv) S >> (h/v)2 >> 1. In  this case K2(t) dominates throughout the final period 

of decay, and 
W) = K(O) ( t A / t ) f t  ( t  9 tn) .  

I 
0 S 

FIGURE 7. Schematic division of the (8, h/v)-plane into the four regions (for h/v + 1) in 
which distinct patterns of decay occur. The numbers (i)-(iv) correspond to the numbers 
used in the text. The region h/v g 1 could be similarly divided. 

The reason that the cases (ii), (iii) and (iv) are not embraced by Nihoul’s 
analysis is that, like Deissler, he adopts initial conditions of the form (A 2 )  and 
applies them as though they are valid for all ii; this is legitimate only in the limit 
ko+oo, i.e. S-t 0,  so that only the case (i), in which S is smaller than any other 
small numbers appearing in the analysis, is adequately described. 

The regions of validity of the results (A 13)-(A 17) in the plane of the variables 
(8, h/v) is indicated in figure 7. In the limit h/v-+oo, for fixed S,  only the regions 
(ii) and (iii) survive, and t,+co. The spectacular variability of the results in the 
different regions in this trivial type of linear turbulence may serve a8 a warning 
of the complexity of behaviour that may be anticipated under fully developed 
non-linear conditions. 



H .  K .  Moflatt 

REFERENCES 

ALEXANDROU, N. 1963 Ph.D. Thesis, King’s College, London. 
BATCHELOR, G. K. 1953 Homogeneous Turbulence. Cambridge University Press. 
BATCHELOR, G.  K. & PROUDMAN, I. 1956 Phil. Tram. A 248, 369. 
DEISSLER, R. B. 1963 Phys. Fluids 6, 1250. 
ELISEEV, B. V. 1965ia Soviet Physics, Doklady 10, 239. 
ELISEEV, B. V. 19658 J .  Appl. Math. Mech. (PMM) 29, 1133. 
GOLITSYN, G. S. 1960 Soviet Physics, Doklady 5, 536. 
LECOCQ, P. 1962 C. R. Acad. Sc. Paris, 254, 3633. 
LEHNERT, B. 1955 Quart. Appl. Math. 12, 321. 
LIEPMANN, H. W. 1952 2. Appl. Math. Phys. 3, 321. 
MOFFATT, H. K. 1962 Mdcanique de la Turbulence, p. 395. Editions du C.N.R.S. no. 108. 

Paris. 
NESTLERODE, J. A. & LUMLEY, J. L. 1963 Phys. Fluids 6, 1260. 
NIHOUL, J. C. J .  1965 Physica31, 141. 
N m o a ,  J. C. J. 1966 Phys. Fluids 9, 2370, 
SAFFMAN, P. G. 1967 J .  Fluid Mech. 27, 581. 


